Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Investment Management and Financial Innovations ; 19(3):49-59, 2022.
Article in English | Scopus | ID: covidwho-1988803

ABSTRACT

Corporate social responsibility (CSR) is quite a new concept to business and society in Vietnam. Information on CSR reflects a firm's commitment to ethical behavior in its activities and reputation. However, it is questioned whether the information disclosure has any relationship with firm performance. Employing panel regression of about 200 listed firms on the Vietnam Stock Exchange and space-based measurement of CSR disclosure, the study confirms a positive impact of CSR disclosure on firm performance. Firms use CSR disclosures to indirectly improve their performance. Firms that disclose CSR with greater degree of information experience higher marginal profitability. This finding supports stakeholder theory, legitimacy theory, and signaling theory in using CSR disclosure as a tool to improve firms' reputation and transparency, maintain longterm operation, and hence improve financial performance. During the COVID-19 pandemic, firms that engage more in CSR will suffer less from the pandemic than firms that do not. Thus, the study implies a promising CSR picture for corporations in Vietnam. Investors, policy makers and any related authorities can utilize these findings to get more insight into the business through CSR disclosures. © Ngoc Mai Tran, Manh Ha Tran, 2022.

2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1092321.v1

ABSTRACT

Background: A global pandemic has been declared for coronavirus disease 2019 (COVID-19), which has serious impacts on human health and healthcare systems in the affected areas, including Vietnam. None of the previous studies have a framework to provide summary statistics of the virus variants and assess the severity associated with virus proteins and host cells in COVID-19 patients in Vietnam. Method: In this paper, we comprehensively investigated SARS-CoV-2 variants and immune responses in COVID-19 patients in Vietnam. We provided summary statistics of a target sequence of SARS-CoV-2 for data scientists to use in downstream analysis for therapeutic targets. For host cells, we proposed a predictive model of the severity of COVID-19 based on public datasets of hospitalization status in Vietnam, incorporating a polygenic risk score. This score uses immunogenic SNP biomarkers as indicators of COVID-19 severity. Result: We identified that the Delta variant of SARS-CoV-2 is most prevalent in southern areas of Vietnam and it is different from other areas in the world using various data sources. Our predictive models of COVID-19 severity had high accuracy (Random Forest AUC = 0.81, Elastic Net AUC = 0.7, and SVM AUC = 0.69) and showed that the use of polygenic risk scores increased the models’ predictive capabilities. Conclusion: We provided a comprehensive analysis for COVID-19 severity in Vietnam. This investigation is not only helpful for COVID-19 treatment in therapeutic target studies, but also could influence further research on the disease progression and personalized clinical outcomes.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.20.453162

ABSTRACT

The Coronavirus disease-2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), has become a dire global health concern. The development of vaccines with high immunogenicity and safety is crucial for control of the global COVID-19 pandemic and prevention of further illness and fatalities. Here, we report development of SARS-CoV-2 vaccine candidate, Nanocovax, based on recombinant protein production of the extracellular (soluble) portion of the S protein of SARS-CoV-2. The results showed that Nanocovax induced high levels of S protein-specific IgG, as well neutralizing antibody in three animal models including Balb/C mice, Syrian hamsters, and non-human primate (Macaca leonina). In addition, the viral challenge study using the hamster model showed that Nanocovax protected the upper respiratory tract from SARS-CoV-2 infection. No adverse effects were induced by Nanocovax in swiss mice (Musmusculus var. Albino), Rats (Rattus norvegicus), and New Zealand rabbits. These pre-clinical results indicated that Nanocovax is safe and effective


Subject(s)
COVID-19 , Coronavirus Infections
4.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2103.10885v6

ABSTRACT

Introduction: The aim of our retrospective study was to quantify the impact of Covid-19 on the temporal distribution of Emergency Medical Services (EMS) demand in Travis County, Austin, Texas and propose a robust model to forecast Covid-19 EMS incidents. Methods: We analyzed the temporal distribution of EMS calls in the Austin-Travis County area between January 1st, 2019, and December 31st, 2020. Change point detection was performed to identify critical dates marking changes in EMS call distributions, and time series regression was applied for forecasting Covid-19 EMS incidents. Results: Two critical dates marked the impact of Covid-19 on the distribution of EMS calls: March 17th, when the daily number of non-pandemic EMS incidents dropped significantly, and May 13th, by which the daily number of EMS calls climbed back to 75% of the number in pre-Covid-19 time. The new daily count of the hospitalization of Covid-19 patients alone proves a powerful predictor of the number of pandemic EMS calls, with an r2 value equal to 0.85. In particular, for every 2.5 cases where EMS takes a Covid-19 patient to a hospital, one person is admitted. Conclusion: The mean daily number of non-pandemic EMS demand was significantly less than the period before Covid-19 pandemic. The number of EMS calls for Covid-19 symptoms can be predicted from the daily new hospitalization of Covid-19 patients. These findings may be of interest to EMS departments as they plan for future pandemics, including the ability to predict pandemic-related calls in an effort to adjust a targeted response.


Subject(s)
COVID-19
5.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3769210

ABSTRACT

Background: We assessed the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a prefusion conformation by a novel molecular clamp (Sclamp).Methods: Phase 1, double-blind, placebo-controlled trial conducted in Australia (July 2020–ongoing; ClinicalTrials.gov NCT04495933). Healthy adults (18-55 years) received two doses of placebo, 5-μg, 15-μg, or 45-μg SARS-CoV-2 Sclamp, or one 45-μg dose of SARS-CoV-2 Sclamp followed by placebo, 28 days apart (n=120; 24 per group). Safety, humoral immunogenicity (ELISA, microneutralisation, pseudovirus neutralisation), and cellular immunogenicity (antigen-specific CD4+/CD8+ T-cells, antibody-secreting cells) were assessed up to 56 days after the first dose.Findings: The SARS-CoV-2 Sclamp vaccine was very well tolerated with few systemic reactions. All two-dose regimens elicited robust, broadly neutralising humoral responses. Geometric mean titres were higher than in sera from convalescent COVID-19 patients and strongly neutralised spike variants of concern, including N501Y. Moreover, humoral and cellular responses were highly correlated. However, antibodies elicited to a peptide sequence used in the molecular clamp derived from human immunodeficiency virus-1 (HIV-1) gp41 cross-reacted weakly with some HIV diagnostic screening tests.Interpretation: These first-in-human results demonstrate that a subunit vaccine comprising mammalian cell culture-derived, molecular clamp-stabilised recombinant spike protein formulated in a squalene-in-oil adjuvant elicits strong immune responses with an excellent safety profile. However, the gp41 peptide induced diagnostic interference, creates a likely barrier to widespread use and highlights the criticality of potential off-target immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response.Clinical Trial Registration: ClinicalTrials.gov (NCT04495933).Funding: Coalition for Epidemic Preparedness Innovations; National Health and Medical Research Council, Queensland Government, and philanthropic sources.Declaration of Interests: KJC and DW report grants from the Coalition for Epidemic Preparedness Innovations, the National Health and Medical Research Council of Australia, and the Queensland Government, during the conduct of the study; other from ViceBio Limited, outside the submitted work; and has patents pending (AU 2018241252; BR112019019813.0; CA 3057171; CH 201880022016.9; EP 18775234.0; IN 201917038666; ID P00201909145; IL 269534; JP 2019-553883; MX/a/2019/011599; NZ 757178; KR 0-2019-7031415; SG 11201908280S; US 16/498865). JB reports personal fees from CSL Limited, during the conduct of the study, and other from CSL Limited, outside the submitted work. WZ reports grants from the National Health and Medical Research Council of Australia, the Research Grants Council of the Hong Kong Special Administrative Region, China, and the Jack Ma Foundation, during the conduct of the study. SM-H reports grants from Canarian Foundation Doctor Manuel Morales, during the conduct of the study. KJS reports grants from the the Australian Medical Research Future Fund, during the conduct of the study. AWC reports grants from the Australian Medical Research Future Fund and a National Health and Medical Research Council of Australia Career Development Fellowship, during the conduct of the study. BDW reports grants from the National Health and Medical Research Council of Australia, the Australian Medical Research Future Fund, and the Victorian State Government, during the conduct of the study. PMH reports grants from the Australian Medical Research Future Fund, during the conduct of the study. DP reports grants from the National Health and Medical Research Council of Australia, the A2 Milk Foundation, and the Jack Ma Foundation, during the conduct of the study. CR reports grants from the Coalition for Epidemic Preparedness Innovations, during the conduct of the study. PRY reports grants from the Coalition for Epidemic Preparedness Innovations, the National Health and Medical Research Council of Australia, and the Queensland Government, during the conduct of the study; grants from ViceBio Limited, outside the submitted work; and a patent issued (US 2020/0040042). FLM, Zl, DKW, PE, JAL, STMC, NM, SA, CLH, KH, PG, LH, THON, MHT, PT, JB, PCR, SN, SC, TH, KK, KS, and TPM have nothing to disclose.Ethics Approval Statement: The protocol was approved by the Alfred Health Human Research Ethics Committee (2020001376/334/20).


Subject(s)
HIV Infections , COVID-19 , Alopecia Areata
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3736395

ABSTRACT

Efforts to develop and deploy effective vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continue at pace. Here we describe rational antigen design through to manufacturability and vaccine efficacy, of a prefusion-stabilised Spike (S) protein, Sclamp. This strategy uses an orthogonal stabilisation approach compared to canonical vaccines, in combination with the licensed adjuvant MF59 (Seqirus). In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease, and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. The Sclamp vaccine candidate is currently completing Phase 1 clinical evaluation, in parallel with large-scale commercial manufacture for pivotal efficacy trials and potential widespread distribution.Funding: This work was funded by CEPI.Conflict of Interest: K.J.C., D.W. and P.R.Y. are inventors of the “Molecular Clamp” patent, US 2020/0040042.


Subject(s)
Severe Acute Respiratory Syndrome
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-68892.v1

ABSTRACT

Efforts to develop and deploy effective vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continue at pace with more than 30 candidate vaccines now in clinical evaluation. Here we describe the preclinical development of an adjuvanted, prefusion-stabilised Spike (S) protein “Sclamp” subunit vaccine, from rational antigen design through to assessing manufacturability and vaccine efficacy. In mice, the vaccine candidate elicits high levels of neutralising antibodies to epitopes both within and outside the receptor binding domain (RBD) of S, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells. We also show protection in Syrian hamsters, which has emerged as a robust animal model for pulmonary SARS-CoV-2 infection. No evidence of vaccine enhanced disease was observed in animal challenge studies and pre-clinical safety was further demonstrated in a GLP toxicology study in rats. The Sclamp vaccine candidate is currently progressing rapidly through clinical evaluation in parallel with large-scale manufacture for pivotal efficacy trials and potential widespread distribution.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL